5 research outputs found

    Optimal Wheelchair Multi-LiDAR Placement for Indoor SLAM

    Get PDF
    One of the most prevalent technologies used in modern robotics is Simultaneous Localization and Mapping or, SLAM. Modern SLAM technologies usually employ a number of different probabilistic mathematics to perform processes that enable modern robots to not only map an environment but, also, concurrently localize themselves within said environment. Existing open-source SLAM technologies not only range in the different probabilistic methods they employ to achieve their task but, also, by how well the task is achieved and by their computational requirements. Additionally, the positioning of the sensors in the robot also has a substantial effect on how well these technologies work. Therefore, this dissertation is dedicated to the comparison of existing open-source ROS implemented 2D SLAM technologies and in the maximization of the performance of said SLAM technologies by researching optimal sensor placement in a Intelligent Wheelchair context, using SLAM performance as a benchmark

    Developing a subpopulation-based model for the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): conceptual model out-line

    Get PDF
    Bactrocera oleae Rossi (olive fruit fly) is a dipteran of the family Tephritidae, considered the key pest of olives in Mediterranean countries, where it causes losses of great economic impact. Nat ural pest control is an important alternative or complement to the use of plant protection products against B. oleae. This is an ecosystem service that can be enhanced if we are able to predict its behav ior, which can be done through computer models simulating interactions between animals, agricul tural management and climate. In this paper we present the conceptual model of a spatially explicit subpopulation-based model being developed for B. oleae in olive groves. In this modelling tech nique, the simulated dynamic landscape is segmented into non-overlapping cells, where the sub populations of B. oleae are represented as separate but interacting entities. Our model is based on the Animal Landscape Man Simulation System (ALMaSS), which comprises a highly detailed and realistic landscape representation, incorporating data on different aspects of farm management, crop development, and climate, and where simulated entities operate. We present the general out line of B. oleae’s life cycle, as well as succinct information on how these organisms interact with their environment. This is a step for the development of the final model and its implementation in AL MaSS.info:eu-repo/semantics/publishedVersio

    Building a Portuguese Coalition for Biodiversity Genomics

    Get PDF
    The diverse physiography of the Portuguese land and marine territory, spanning from continental Europe to the Atlantic archipelagos, has made it an important repository of biodiversity throughout the Pleistocene glacial cycles, leading to a remarkable diversity of species and ecosystems. This rich biodiversity is under threat from anthropogenic drivers, such as climate change, invasive species, land use changes, overexploitation or pathogen (re)emergence. The inventory, characterization and study of biodiversity at inter- and intra-specific levels using genomics is crucial to promote its preservation and recovery by informing biodiversity conservation policies, management measures and research. The participation of researchers from Portuguese institutions in the European Reference Genome Atlas (ERGA) initiative, and its pilot effort to generate reference genomes for European biodiversity, has reinforced the establishment of Biogenome Portugal. This nascent institutional network will connect the national community of researchers in genomics. Here, we describe the Portuguese contribution to ERGA’s pilot effort, which will generate high-quality reference genomes of six species from Portugal that are endemic, iconic and/or endangered, and include plants, insects and vertebrates (fish, birds and mammals) from mainland Portugal or the Azores islands. In addition, we outline the objectives of Biogenome Portugal, which aims to (i) promote scientific collaboration, (ii) contribute to advanced training, (iii) stimulate the participation of institutions and researchers based in Portugal in international biodiversity genomics initiatives, and (iv) contribute to the transfer of knowledge to stakeholders and engaging the public to preserve biodiversity. This initiative will strengthen biodiversity genomics research in Portugal and fuel the genomic inventory of Portuguese eukaryotic species. Such efforts will be critical to the conservation of the country’s rich biodiversity and will contribute to ERGA’s goal of generating reference genomes for European species.info:eu-repo/semantics/publishedVersio
    corecore